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Turbulence theory has been recently enriched by the concept of extended self-similarity introduced by Benzi
et al. [Phys. Rev. E 48, R29 (1993)] which showed that an extended scaling range, including both the inertial
and the dissipative regions, can be observed when the usual gth-order velocity structure functions are plotted
against the structure function of the third order. The same concept has been reviewed by Stolovitzky and
Sreenivasan [Phys. Rev. E 48, R33 (1993)], whose high resolution measurements show the existence of two
scaling regions which become increasingly distinct as the order of the velocity structure function increases. In
this paper, by using a shell model for three-dimensional magnetohydrodynamic (MHD) turbulence, we show
that the extended self-similarity could be an interesting concept also in fully developed MHD turbulence.

PACS number(s): 47.65.+a, 47.27.—i

Interesting features of turbulent flows are represented by
the scaling properties of the velocity structure function in the
inertial range. This region, in homogeneous and isotropic
fully developed turbulence, can be defined as the range of
length scales ! for which the Kolmogorov relation [1] holds

(Av?)=—Ke)l. ¢y

The quantity € represents the energy dissipation rate per unit
mass, Av(l)=v(x+1)—v(x) is the usual velocity structure
function, and the angle brackets represent spatial averages.
The relation (1) can be derived from the Navier-Stokes equa-
tion, and is experimentally verified over an interval of scales
! which depends on the Reynolds number. Experiments in
fluid flows showed the existence of scale invariance mea-
sured from a scaling exponent s(q) defined, in the range /
where Eq. (1) is satisfied, through (Av?)~I°(@ (the symbol
~ means that two quantities have the same scaling law). In
the absence of intermittency the linear Kolmogorov scaling
law s(gq) =q/3 holds, whereas s(q) is a nonlinear function of
q in the presence of intermittency (see Ref. [2] and refer-
ences therein). However, for small Reynolds numbers, the
calculation of s(gq) can be mistaken due to the limited exten-
sion of the inertial range. Recently Benzi et al. [3] looked for
an extension of the range of scale similarity which would be
useful in the calculation of the scaling exponents at small
Reynolds numbers. Since the relation (|A|*)~|(Av?)| is
verified experimentally, these authors suggest obtaining the
scaling exponents through a relation involving the third-
order velocity structure function, say (Av?)~(|Av|3)¢@
~|(Av3)|¥9. Almost surprisingly the log-log plots of
(|Av|9) vs (|Av|?), and those of |(Av?)| vs |[{Av?)|, seem
to show, for g=<6, a range of scale similarity which extends
well beyond the inertial range as measured from Eq. (1), and
includes the dissipation range. From these plots Benzi et al.
[3] claimed the existence of an extended self-similarity in
fully developed turbulence, supposing that the same was true
also for magnetohydrodynamic (MHD) turbulence. This
analysis has been repeated [4] by using measurements with
very long data records. The results show that the large ex-
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tended self-similarity is not visible for all the values of g.
Indeed, for the higher-order velocity structure functions, the
inertial range and the dissipative range separate out [4]: a
log-log plot of {|Av|?) vs (JAv|?) (as well as a log-log plot
of [{Av?)| vs |(Av?)]), consists of two linear regions, with
almost different slopes, joined by a transition region. The
difference in the slopes, measured in both ranges, increases
as q increases. Even if these measurements [4] seem to bar,
for high-order structure functions, the presence of the ex-
tended self-similarity, this concept is an interesting and
promising tool, and reveals some ‘“hidden” properties of
scale similarities in turbulence.

Historically, scale similarities in MHD turbulent flows re-
ceived less attention with respect to fluid flows. One of the
reasons is the fact that the “laboratory measurements’ which
allow us to obtain information on MHD turbulence are rep-
resented by satellite observations of both the velocity u and
the magnetic B fluctuations in the solar wind plasma. In this
case, due to the difference in both the nature of the turbu-
lence and the measurements from the ordinary fluid flows, a
statistically homogeneous sample of turbulent magnetofluid
is limited to data records with a number of sampling points
smaller than, for example, that used by Stolovitzky and
Sreenivasan [4]. For this reason the higher-order structure
functions, as measured in the solar wind plasma, must be
handled carefully. Even if this “handicap” is present, the
curves analogous to s(g), for the velocity and the magnetic
field structure functions, appeared in some papers [5,6].
These analyses represent convincing experimental evidence
for the presence of intermittency in MHD turbulence. On the
other hand, three-dimensional (3D) MHD simulations [7]
showed a multifractal structure, and the results of the p
model [8], have been extended to MHD turbulence [9]. Due
to the limitation of the measurements in MHD turbulence,
we think that the notion of extended self-similarity could be
very useful for a better description of the scale similarity and
the intermittency in the MHD turbulence.

To check the notion of extended self-similarity, we stud-
ied a shell model which describes MHD turbulence [10,11].

R671 © 1994 The American Physical Society



RAPID COMMUNICATIONS

R672

Shell models can be heuristically obtained by imposing the
general conservation principles of fluid flows, and they
mimic the gross features of MHD turbulence [12]. Let us
assume that the wave vector space is divided into discrete
shells A, (where n=0,1,...,N) defined by k,2" 12
<|k|<ky2"* 2. Each shell has associated a discrete wave
vector k,=2" (we take ky=1) and two dimensionless real
dynamical variables: a discrete velocity field u,(t) and a
magnetic field b,(t)=B,/(4mp)"? (p being the constant
plasma mass density). From these fields we can define
Z;(t)=u,(t) £ b,(t), which represent the discrete Elsasser
variables, say Alfvénic fluctuations propagating in the oppo-
site direction along the magnetic field of the largest scale. We
then assume that Z () evolve according to a system of
equations whose characteristics are similar to the MHD
equations when written in the Fourier space [10,12]

dz; (1)

Tk 2 AL ADZ (0 VKZE(0)+ 8y
2y

The parameters A; ; are free constants, v is a dimensionless
dissipative coefficient, and 6, is an external driving force
acting on the largest-scale velocity field. Imposing that in the
absence of dissipation and forcing terms the system (as well
as the original MHD equations) conserves both pseudoener-
gies E*(t)==,[Z;(¢)]? and assuming that the nonlinear
interactions happen only between contiguous shells
(i,j=—1,0,1), we obtain

7=knA(Zf—1Zf—1_?Z:+1Z;)
+k,,(Z,:—'_IZf—2Zf+IZf+1)—kaZf+6,,,0. (2

The parameter A is the only free constant. The system (2)
shares some peculiarities with MHD turbulence, say a power
law spectrum, chaotic behavior when v is varied, and a kind
of dynamo effect [10,11]. The statistical properties of MHD
equations are almost well described by Eq. (2), while the
main difference is represented by the absence of spatial fluc-
tuations within each shell [12]. By looking at Eq. (2), it is a
simple matter to show the existence of an unstable fixed
point of the Kolmogorov type Z f~k,,_ 13 The Alfvén effect
has not been explicitly incorporated in the MHD shell model
[10,12], thus a &> Kolmogorov-type spectrum for the
pseudoenergies is obtained instead of a k~>? Kraichnan
spectrum. Starting from random values of Z f at t=0, we
have numerically solved Eq. (2) by using N=19 modes,
v=10"" (the dissipative wave vector is kp~ v~ ¥/4=216),
and different values of the coupling coefficient A (see Refs.
[10,11] for details on the properties of the system when the
parameters are varied). In this paper we will present the re-
sults obtained for both A=10"2 and 0.7. These values of A
refer to two different dynamical regimes of Eq. (2). Using
the first value of A the system lies on a chaotic attractor,
while when A >0.5 the attractor changes its nature becoming
a nonmagnetic stable fixed point [11]. The integration of the
system has been carried out for several time steps thus ob-
taining, for each variable Z (¢), a series of 107 points on the
attractor. This is enough to assure the convergence, at least
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FIG. 1. log-log plots of the spectrum of the quantity F, (3)
which represents k,S(3) (squares) and k,G, (3) (triangles). Black
symbols refer to the modes S, and G, , white symbols refer to
S; and G . These plots correspond to A=10"2
for g=<20, of both the quantities S, (g)=(|Z,|?) and
G, (9)={(Z;)7)| (angle brackets being time average)
which represent the analogs of the velocity structure func-
tions in the shell model framework [13]. Looking at the time
evolution of Z f , one can observe the presence of both lo-
calized bursts of activity in between periods of slow activity
[10] which reflect a highly time intermittent behavior. The
intermittency, similar to the behavior of the chaotic nonmag-
netic Ohkitami-Yamada shell model [13], seems to be an
effect of the chaotic behavior of the model.

Since the system (2) exhibits an unstable fixed point of
the Kolmogorov type, we argue that a relation like (1), say
SE(3)~G,(3)~k, ", should exist. In Fig. 1 we show the
log-log plots of the quantities k,S, (3) and k,G, (3) vs k,
obtained in the chaotic, magnetic regime (A =10"2). As can
be seen, an inertial range is present, and in this range we can
calculate the scaling exponents £~ (q) through the relation
SE(q)~ k; € @. The range where £*(3)=1.000.01 ex-
tends approximately to the region 2*<k,<2'", while the
range in which £ (3)=1.00£0.01 is shifted to the region
27<k,<2". Looking at the spectra of G (3) it can be seen
that only for G, (3) an inertial range exists. This range is
extended to a smaller region 28<k,<2!" where
&7 (3)=1.00+0.05. The strong difference among the spectra
of §7(q) and G, (g), which appears in a very limited form
in the measurements on real fluid flows, is due to the cancel-
lations occurring on the average, for even g, in the calcula-
tion of G (g). The difference among the modes S, and
S, , as well as among G : and G, , is due to the initial value
of the cross helicity (defined as Z, —Z,). In fact, different
initial values for the fields give rise to different spectra for
the structure functions. It is worthwhile to remark that the
higher-order structure functions S, (q) (say, for g=6) show
oscillations at some length scales, whose amplitude is how-
ever small as compared to the “violent” oscillations seen in
G:(q). The presence of oscillations in S ~(q) is a “genu-
ine” effect of the chaotic shell models, being evident also in
the Ohkitami-Yamada model, and seems to be caused by a
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= these oscillations increases slowly when g increases, thus
o 653” resulting in a slowly increasing error in the determination of
+|;= 5 o° the scaling exponents x*(g). From Fig. 2 we can see that
=] :hﬁﬁ the oscillations are more evident for S (q). Actually the
& e log-log plots of S, (q) vs k, show oscillations with ampli-
EREET Y /D tudes which extend up to two decades, while the oscillations
Ll seen in Fig. 2(b) have a very small extension. In Fig. 3 we
° report the scaling exponents y*(gq) as a function of g. As
-15 T " T g i can be seen, the scaling exponents are the same as far as the
‘086 4 2 0 2 range g<5 is considered, but as g increases there is an evi-
log osi(3) dent difference between xy* and y~. The extended self-
10 n

FIG. 2. log-log plots of S;(g) vs S;(3) for g=4 (a) and
g=38 (b). Black squares correspond to S, , white squares corre-
spond to S, . These plots correspond to the chaotic magnetic at-
tractor obtained for A=10"2

lacunarity of fractal sets [14]. By changing the nature of the
attractor (say for A>0.5) an inertial range is well visible for
S, while the oscillations disappear for all the values of g.
On the contrary, G, show the same oscillating behavior we
have evidenced.

We have looked at the scaling exponents x (q) through a
relation similar to that suggested in [3], say

SE(g)~[SZK .

log-log plots of S;(g) vs S;(3) in the case A=10"2 (cha-
otic, magnetic attractor) including both the inertial and the
dissipative ranges are shown in Fig. 2 for two different val-
ues of g. An extended similarity range is clearly visible in
the plot for g=4 [Fig. 2(a)]; this happens for both S, and
S, and the same behavior is visible at least for g=<6. This
range of scale similarity extending beyond the inertial range
and including the dissipative range is what is originally
found in Ref. [3]. For the higher values of g [Fig. 2(b) an-
other behavior becomes evident, that is, the curves S (q) vs
S, (3) present some oscillations around a linear scaling law.
A similar behavior is visible for all g>6. The amplitude of

similarity is visible for all the values of the coupling coeffi-
cients A <0.5, while for the A>0.5 some differences can be
found. In Fig. 4 we show the log-log plots of S, (gq) vs
S:(3) in the case A=0.7 (stable fixed-point, nonmagnetic
attractor). The presence of the extended similarity range is
distinctly visible because a well defined linear scale is ex-
tended both in the inertial and in the dissipative ranges. The
linear range is very well defined and the calculation of the
scaling exponents can be carried out without errors. This is
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FIG. 4. log-log plots of S;(q) vs S;(3) for g=4 (black
squares) and g=8 (white squares). These plots correspond to the
nonchaotic nonmagnetic attractor obtained for A =0.7.
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FIG. 5. Scaling exponents y(q) vs g, along with the Kolmog-
orov scaling law g/3 (full line). The odd-order (white squares) and
even-order (black squares) exponents fall on different curves.

due to the absence of oscillations in the structure functions.
However, in this case we found that the scaling exponents
follow a linear Kolmogorov scaling law, say x*(q)
=x"(q)=q/3, that is, the time intermittency disappears in
the nonchaotic case. Similar results can be found for differ-
ent values of A>0.5. Since the values of G, (q) do not
show a clear scale similarity, the log-log plots of G (q)
against G, (3) in the extended region do not exhibit any
particular behavior. Rather we have calculated the scaling
exponents ¥(q), through the relation G, (¢)~k??, only in
the small inertial range 2°<k,<2!'. In Fig. 5 we show the
plots of y(q) vs q. The striking feature of this figure is
represented by the fact that the odd-order exponents fall on a
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curve that is distinct and higher than the curve which relates
the even-order exponents. This typical behavior, which in the
shell model could be seen as a naive result due to the limi-
tation of the scaling range, has also been found [4] as a true
result in fluid flow measurements.

A last remark concerns the sensitivity of our results to the
precise value of the initial cross helicity. We found that the
presence of the extended scale similarity, which is visible for
all the values of A, is also visible for all the initial values of
the cross helicity. By changing the initial cross helicity the
only difference we found was in the values of the scaling
exponents x~(q). Indeed when A<0.5 different values of
Z (0)—Z, (0) give rise to different scaling exponents.
When A >0.5 the (nonmagnetic) attractor has zero cross he-
licity and we found x*(q)=x"(g)=g¢/3 for all the initial
values. Since to our knowledge there is no analysis of the
extended self-similarity using nonmagnetic shell models, a
particularly interesting case in the MHD model is obtained
by imposing zero initial cross helicity. Indeed, since the ex-
ternal force in Eq. (2) acts only on the velocity field, when
Z7(0)=Z, (0) the system (2) reduces to a nonmagnetic
shell model [12]. In this case, for all the values of A, we
found absence of intermittency, absence of oscillations of
57 (q), while the extended self-similarity is well visible for
all the values of g. In conclusion, we showed that a kind of
extended self-similarity is detectable in the results of a shell
model for MHD turbulence. Since the model is obtained by
imposing only conservation principles, we think that the con-
cept of extended self-similarity is a basic property of fluid
flows. We argue that our results could be extended to MHD
turbulence in the solar wind plasma. Experiments from this
perspective are currently in progress.
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